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Compliance of a microfibril subjected
to shear and normal loads

Jingzhou Liu1, Chung-Yuen Hui1,*, Lulin Shen1 and Anand Jagota2

1Department of Theoretical and Applied Mechanics, Cornell University,
Ithaca, NY 14853, USA

2Department of Chemical Engineering, Lehigh University, Bethlehem, PA 18015, USA

Many synthetic bio-inspired adhesives consist of an array of microfibrils attached to an
elastic backing layer, resulting in a tough and compliant structure. The surface region is
usually subjected to large and nonlinear deformations during contact with an indenter,
leading to a strongly nonlinear response. In order to understand the compliance of the fibrillar
regions, we examine the nonlinear deformation of a single fibril subjected to a combination of
shear and normal loads. An exact closed-form solution is obtained using elliptic functions.
The prediction of our model compares well with the results of an indentation experiment.
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1. INTRODUCTION

Recent interest in bio-inspired adhesives has motivated
many researchers to fabricate microfibril arrays (Liu &
Bhushan 2003; Peressadko & Gorb 2004; Chung &
Chaudhury 2005; Crosby et al. 2005; Glassmaker et al.
2005, 2007; Huber et al. 2005; Northen & Turner 2005;
Yurdumakan et al. 2005; Kim & Sitti 2006; Majidi et al.
2006; Aksak et al. 2007; Gorb et al. 2007; Greiner et al.
2007; Varenberg & Gorb 2007) and to study their
contact mechanics and adhesion (Jagota & Bennison
2002; Gao et al. 2003, 2005; Persson & Gorb 2003; Hui
et al. 2004; Persson et al. 2005; Spolenak et al. 2005a,b;
Tang et al. 2005; Bhushan et al. 2006; Tian et al. 2006;
Yao & Gao 2006; Chen & Gao 2007). Most of these
studies focus on how the interface between the
microfibrils and a smooth, hard substrate separates
under a normal load. Of equal importance is how these
fibrillar surfaces respond to a combination of normal
and shear loads. For example, experiments have
demonstrated that the maximum shear force a gecko
seta can support is approximately six times greater
than its normal pull-off force (Autumn et al. 2000), and
direct measurements of how various species adhere to
surfaces are conducted under shear (Irschick et al.
1996). However, these observations are often inter-
preted using theories based on the normal contact of
surfaces. Therefore, there is a need to develop contact
and adhesion models that take account of shear.

In the past year, there have been several experi-
mental studies on the frictional behaviour of microfibril
arrays against a flat substrate (Majidi et al. 2006;
Ge et al. 2007). The fibril arrays fabricated by Majidi
et al. (2006) and Ge et al. (2007) consist of very stiff
orrespondence (ch45@cornell.edu).
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fibrils, whereas those fabricated by P. R. Guduru (2007,
personal communication) and Shen et al. (2008)
are made of poly(dimethylsiloxane) (PDMS), a soft
elastomer with a shear modulus of the order of 1 MPa.
Despite the large differences in modulus, what emerges
from these experiments is that the static friction of
these arrays is much higher than that exhibited by flat
unstructured controls made of the same material.

The mechanics of a flat elastic substrate indented by
a smooth, soft elastic sphere under a normal load is
well described by the Johnson–Kendall–Roberts theory
(Johnson et al. 1971). A theory for the compliance of
microfibril arrays under normal indentation has been
developed (Noderer et al. 2007). While there is a strong
quantitative influence of the fibrillar architecture on
compliance, there are qualitative similarities between it
and an unstructured flat control. For example, the load
versus contact area curves have similar shapes and
compliance generally decreases with increasing contact
area (increasing load). The situation can be quite
different with shear. Figure 1a shows schematically an
experiment in which a film-terminated PDMS micro-
fibril array is moved in shear relative to a fixed
spherical indenter. Briefly (see Shen et al. (2008) for
details), the microfibril array consists of micropillars
oriented normal to an elastic PDMS backing layer. The
micropillars are connected at their terminal ends by a
thin, flexible film. This structure has been shown to
significantly improve adhesion when compared with a
flat unstructured control (Glassmaker et al. 2007;
Noderer et al. 2007). The backing layer is bonded to
a glass slide that is placed on an inverted optical
microscope. Since PDMS is transparent, its defor-
mation can be recorded by the microscope. A fixed
normal load, FN, is applied to press the indenter into
contact with the sample surface (i.e. the thin film).
J. R. Soc. Interface (2008) 5, 1087–1097
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Figure 2. Optical micrographs of the contact region. The direction of shear displacement u is indicated by the arrow on the right.
The image of the top end of a fibril appears as a fuzzy grey circle, whereas the bottom end appears as a smaller dark square. This
difference allows us to determine the relative deflection DT of each fibril. (a–c) correspond to the points A–C in figure 1b,
respectively. The contact region Uc is the white polygon.
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Figure 1. (a) A glass spherical indenter is placed on the surface of a microfibril array under a fixed normal force (P) (applied via a
mechanical balance). The sample is translated at a constant rate, u, and the shear force is measured by a load cell. Deformation
near the contact region is recorded by means of an inverted optical microscope. The shear load versus shear displacement curve
for a fibrillar sample is shown in (b). Three points are selected for comparison with the theory.
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The shear force Fs is applied by translating the glass
slide at a constant rate. A typical shear force versus
shear displacement curve is shown in figure 1b. As the
relative shear displacement between the indenter and
the sample increases, the shear force increases to a peak
value (stage 1). Beyond the peak, it decreases rapidly
(stage 2) and then remains nearly constant (stage 3).
Visual inspection of the contact region in stage 1 reveals
that it changes in shape and size, but there is no
macroscopic sliding between the indenter and the
sample. In stage 3, the indenter slides steadily on the
sample. More detailed explanations of the physics
behind these different stages can be found in Shen et al.
(2008). Briefly, in stage 1, the fibrils in contact with
the indenter are loaded under shear. As shear increases,
the elastic energy stored in these fibrils increases. This
elastic energy is released suddenly in stage 2 due to the
propagation of an interface crack. In stage 3, relative
motion between the indenter and the sample appears to
be accommodated by the propagation of Schallamach-
like waves.
J. R. Soc. Interface (2008)
Owing to the applied shear displacement, the top of a
typical fibril in a region enclosing the contact zone is
displaced relative to the bottom. Figure 2 shows three
optical micrographs of the contact region correspond-
ing to the three points in figure 1b. In figure 2, the image
of the top end of a fibril appears as a fuzzy grey circle,
whereas the bottom end appears as a smaller dark
square. This difference allows us to determine the
relative deflection, DT, of each fibril. The nearest-
neighbour distance between fibrils is 87 mm, while their
length is 67 mm. From figure 2c, it can be seen that the
lateral displacement of a typical fibril can exceed its
length. We show later that the usual small-deflection
beam-column model (BCM; Timoshenko & Gere 1961)
is not accurate enough to capture the deformation of
microfibrils in our experiments. This motivates us to
use a nonlinear large-deflection theory.

It should be noted that, when the same indentation
test is performed on a flat unstructured control PDMS
substrate, the contact area is found to decrease mono-
tonically with increasing shear, consistent with a theory

http://rsif.royalsocietypublishing.org/
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Figure 3. The coordinate system used in our analysis. The
undeformed beam is straight and has length L0. Both the ends
of the beam are clamped. The right end is subjected to a
vertical and tangential displacement DN and DT, respectively.
The coordinates of the point ‘p’ are (x(s), y(s)).

L0

N0

M0

T0

N

T

M( )

N

TN

(  (  ),   (  ))

D
D D

Figure 4. The free-body diagram of a section of the deformed
bar. The right end of this section is clamped (jZ0). DT and
DN are the shear and normal displacements, respectively, at
the right end of the beam. N0 and T0 denote the reaction
forces, whereas the reaction moment is denoted by M0.
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proposed by Savkoor & Briggs (1977). In contrast, with
increasing shear, the contact area for fibrillar samples
initially increases. This difference in behaviour can be
explained by the fact that, when a microfibril under
shear bends, it significantly increases the normal
compliance of the array. Since the normal load is fixed
in these experiments, increase in normal compliance
initially results in an increase in the contact area.

In order to develop a quantitative understanding of
the load-bearing capacity of a fibrillar array under
combined normal and shear loads, we study the
nonlinear deformation of individual microfibrils. The
model for fibril deflection and theoretical results based
on it are presented in §2. In §3 we compare model
predictions with the experiments.
2. ELASTICAMODEL OF A STRETCHABLE BEAM

We model the deformation of a typical microfibril in
stage 1. Since the length of a typical microfibril is
significantly greater than its lateral dimensions, it will
be modelled as a stretchable elastica. Inside the contact
zone, which is denoted by Uc, the thin film is well
adhered to the indenter. Therefore, a fibril in Uc cannot
rotate at this end, implying a clamped boundary
condition. For a sufficiently long fibril, it is reasonable
to assume that its bottom end is also clamped. We
further assume that fibrils do not twist; this assumption
is consistent with the loading conditions in our
experiments. Finally, we neglect the compliance of
the half-space to which the fibril is attached; this is
again reasonable since fibrils are slender.

The problem of interest is an initially straight elastic
beam with an initial length, L0, that is clamped at both
ends. One end of the beam is fixed to a rigid wall (the
backing layer) while the other end is subjected to
vertical and tangential displacements DN and DT,
respectively. Let N0, T0, and M0 denote the unknown
normal, shear and moment applied at this end,
respectively. Let s denote the arc length of the deformed
beam and x(s), y(s) denote the deformed coordinates of
the beam at a point ‘p’ on the bar (figure 3).

Following Frisch-Fay (1962), we assume a linear
relation between curvature and moment, i.e.

EI
dj

ds
ZMðsÞ; ð2:1aÞ

where E is the Young modulus; I is the moment of
inertia; j is the rotation of the deformed bar relative
to the x -axis; and M(s) is the moment acting at a
J. R. Soc. Interface (2008)
generic point ‘p’. (The free-body diagram of the bar is
shown in figure 4.)

The relevant boundary conditions are as follows:

jðsZ 0ÞZjðsZLÞZ 0; ð2:1bÞ

xðsZ 0ÞZ 0 yðsZ 0ÞZ 0; ð2:1cÞ

xðsZLÞZL0 CDN; yðsZLÞZDT; ð2:1dÞ

where L denotes the deformed length of the beam. The
free-body diagram in figure 4 shows that

MðsÞZM0KN0ðDTKyðsÞÞCT0ðL0 CDNKxðsÞÞ:
ð2:2Þ

Substituting (2.2) into (2.1a) gives

EI
dj

ds
ZMðsÞ

ZM0KN0ðDTKyðsÞÞCT0ðL0 CDNKxðsÞÞ:
ð2:3Þ

Let N(s) and T(s) denote the normal (normal to the
cross section of the deformed bar) and shear forces
along the deformed bar, respectively. Force balance
requires that

N cos jKT sin jZN0;

N sin jCT cos jZT0:

)
ð2:4Þ

Equation (2.4) implies that

N ZN0 cos jCT0 sin j: ð2:5Þ
Note that, by definition,

dx

ds
Z cos j; ð2:6aÞ

dy

ds
Z sin j: ð2:6bÞ

Equations (2.6a) and (2.6b) imply that

x Z

ðs
0
cos jðs 0Þds 0; ð2:7aÞ

y Z

ðs
0
sin jðs 0Þds 0: ð2:7bÞ

Combining (2.1d ), (2.7a) and (2.7b), we have

L0 CDN Z

ðL
0
cos jðs 0Þds 0; ð2:8aÞ

DT Z

ðL
0
sin jðs 0Þds 0: ð2:8bÞ

http://rsif.royalsocietypublishing.org/
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To eliminate x and y from equation (2.3), we differen-
tiate (2.3) by s and use (2.6a) and (2.6b),

EI
d2j

ds2
ZN0 sin jðsÞKT0 cos jðsÞ: ð2:9Þ

Multiplying both sides of (2.9) by dj/ds and integrating
the resulting expression gives

dj

ds

� �
2

ZK
2

EI
ðN0 cos jðsÞCT0 sin jðsÞÞCD:

ð2:10Þ
The integration constant D is determined using
the boundary conditions EI djðsZLÞ=dsZM0 and
j(sZL)Z0, and is found to be

D Z
2

EI
N0 C

M0

EI

� �2
: ð2:11Þ

Integrating (2.10) with respect to j, we obtain

sZ

ð
j

0

dj0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K 2

EI ðN0 cos j
0 CT0 sin j0ÞCD

q ;

0%j%jmax; ð2:12Þ

where we have retained only the positive root. By
symmetry (figure 3), the angle j increases with arc
length, s, from either end and reaches a maximum value
of jmax at themidpoint. The value of jmax is found using
dj/dsZ0,

K
2

EI
ðN0 cos jmax CT0 sin jmaxÞCD Z 0: ð2:13Þ

2.1. Extensibility

Let l denote the stretch ratio of a material point ‘p’ on
the beam. It can be labelled by its coordinates,X, on the
initially straight beam, which coincides with the
horizontal axis, i.e. X 2 ð0;L0Þ. Point ‘p’ is displaced
to coordinates (x(s), y(s)) on the deformed beam.
Assuming that the stretch is proportional to the local
normal force,

lZ
ds

dX
5lK1Z

dsKdX

dX
Z cNðxðsÞ; yðsÞÞ

5
ds

dX
Z 1CcNðxðsÞ; yðsÞÞ; ð2:14Þ

where cZ1/EA and A is the cross-sectional area of the
beam. Equation (2.14) can be integrated to giveðL

0

ds 0

1CcN ðxðs 0Þ; yðs 0ÞÞ Z
ðL0

0
dX ZL0: ð2:15Þ

Using (2.5), equation (2.15) becomesðL
0

ds 0

1Cc½N0 cos jðs 0ÞCT0 sin jðs 0Þ� ZL0: ð2:16Þ

For a given T0 and N0, one can solve equations (2.8a),
(2.8b), (2.12) and (2.16) for DN, DT, M0 and L, with

j sZ
L

2

� �
Zjmax: ð2:17Þ
J. R. Soc. Interface (2008)
2.2. An equivalent problem

The deflection in figure 3 can also be obtained by
moving the right (left) end of the beam up (down) by
GDT/2 and outwards by DN/2, with the midpoint of
the beam fixed. If we measure s from the left end of
the beam, then it is easily seen that jmax is attained
at sZL/2. In addition, we can solve the problem for
s2(0, L/2). The boundary conditions are

jðsZ 0ÞZ 0; ð2:18aÞ

j0ðsZL=2ÞZ 0; ð2:18bÞ

j sZ
L

2

� �
Zjmax; ð2:18cÞ

xðsZ 0ÞZ yðsZ 0ÞZ 0; ð2:18dÞ

xðsZL=2ÞZ ðL0 CDNÞ=2; ð2:18eÞ

yðsZL=2ÞZDT=2: ð2:18f Þ
The known quantities are N0, T0, L0; the unknowns are
DN, DT, L and the constant D. The constant D can be
expressed in terms of the unknowns DN, DT, using
(2.11) and noting that the moment at the centre of the
deflected beam is zero, i.e.

M0 C
ðL0 CDNÞT0

2
KN0

DT

2
Z 0: ð2:19Þ

The extensibility condition, equation (2.16), becomesðL=2
0

ds 0

1Cc½N0 cos jðs 0ÞCT0 sin jðs 0Þ� ZL0=2: ð2:20Þ

Likewise, equations (2.8a) and (2.8b) become

L0 CDN

2
Z

ðL=2
0

cos jðs 0Þds 0; ð2:21aÞ

DT

2
Z

ðL=2
0

sin jðs0Þds0: ð2:21bÞ

Given N0, T0, L0, equations (2.12), (2.20), (2.21a) and
(2.21b) can be solved to find the unknowns DN, DT, L.
2.3. Results

There is a simple way to solve the above problem and to
reduce the solution to elliptic integrals (see equations
(A 20), (A 22) and (A 23b) in appendix A). Details are
given in appendix A; here we state the main results.

The problem can be reduced to the solution of the
following three decoupled equations:ffiffiffiffiffiffiffi

EI

2L

r ðqmax

q0

dq

ð1CcL sin qÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin qmaxKsin q

p ZL0=2;

ð2:22Þ

DT

2
Z

ffiffiffiffiffiffiffi
EI

2L

r ðqmax

q0

sinðqK q0Þ
dqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin qmaxKsin q
p ; ð2:23Þ

ðL0 CDNÞ
2

Z

ffiffiffiffiffiffiffi
EI

2L

r ðqmax

q0

cosðqK q0Þ
dqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin qmaxKsin q
p ;

ð2:24Þ
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where L is the magnitude of the total applied force, i.e.

LZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N 2

0 CT 2
0

q
ð2:25aÞ

and q0 is the phase angle of the applied force, i.e.

N0=LZ sin q0; T0=LZ cos q0: ð2:25bÞ

Finally,

qmax hq0 Cjmax; ð2:26Þ
in (2.22)–(2.24). To find DN and DT given T0 andN0, we
solve equation (2.22) for qmax given T0 and N0. We then
substitute qmax into (2.23) and (2.24) to findDN andDT.
0 1 2 3 4 5 6

Figure 5. Normalized shear displacement, �DT, versus
normalized shear force, �T0, for �N 0Z0 (or q0Z0) and
b/L0Z14/67. Solid line, the solution of the nonlinear theory
(2.28)–(2.30); dashed line, the prediction of BCM (2.31).
2.4. Normalization

To expedite the analysis, we define the following
normalized variables:

�T 0 Z
T0L

2
0

2EI
;

�N 0 Z
N0L

2
0

2EI
�LZ

LL2
0

2EI
�DT;N ZDT;N=L0:

9>>>>=
>>>>;

ð2:27Þ

After normalization, equations (2.22)–(2.24) becomeðqmax

q0

dq

1Cc 2EI
L2
0

�L sin q

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin qmaxKsin q

p Z
ffiffiffi
�L

p
;

ð2:28Þ

�DT Z
1ffiffiffi
�L

p
ðqmax

q0

sinðqK q0Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin qmaxKsin q

p dq; ð2:29Þ

1C �DN Z
1ffiffiffi
�L

p
ðqmax

q0

cosðqK q0Þ
dqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin qmaxKsin q
p :

ð2:30Þ
It is interesting to note that the normalized equations
(2.28)–(2.30) depend on two dimensionless para-
meters: q0, which is the phase angle of loading, and
2cEI=L2

0Z2I=AL2
0, which is a purely geometric quan-

tity. For a beam with a square cross section with side
length b, 2I=AL2

0 is proportional to (b/L0)
2, the aspect

ratio squared. The numerical results presented in §2.5
are for bZ14 mm and length L0Z67 mm, which are the
dimensions of fibrils used in our experiments.
2.5. Numerical results

The normalized shear displacement �DT is plotted
against �T0 for �N 0Z0 in figure 5. The prediction of
the BCM (derived in appendix B for our boundary
condition) for small �L is

�DT Z
1

6
�T0; ð2:31Þ

�DN Z �CN0
�N 0 C

1

6

�CN0

ð1K �CN0
�N 0Þ

�T
2
0; ð2:32Þ

where �CN0 h2I=b2L2
0 is the normalized compliance for a

bar under a pure normal load. Note that the shear com-
pliance for small �L is independent of the normal load.
J. R. Soc. Interface (2008)
Figure 5 shows that the small-deflection BCM result
(equations (2.31) and (2.32)) for �N 0Z0 is accurate as
long as �T0%1:5 or when the shear displacement is less
than 30% of the original length of the beam.

Figure 6 plots the normalized shear displacement �DT

versus the normalized shear load �T0 for different
normalized normal forces �N 0 or q0. The normalized
compressive load in figure 6 is chosen to be less than the
buckling load. Owing to adhesion, a fibril (e.g. those at
the edge of the contact zone) can be subjected to tension
(i.e.N0O0).The incremental shear compliance at a fixed
normal load is v �DT=v �T0. The prediction of the BCM is
indicated by the dashed line. In the BCM, the shear
compliance is independent of the normal load (see
appendix B). Figure 6 shows that the BCM is valid only
in the limit when both normal and shear forces are small.
For example, even for small deflections, the
shear compliance is not a constant but increases with
increasing compression (more negative �N 0). In
general, when the beam is under compression, the
BCM theory underestimates the shear compliance for
small shear and it overestimates it for large shear. It is
also clear from figure 6a that, for the range of deflections
of interest in our experiments ð �DTz1Þ, the shear force
predicted by the small-deflection theory can be much
smaller than that predicted by the nonlinear theory.
The normalized incremental shear compliance �CTZ
v �DT=v �T0jN0Z0 versusDT for different three normal forces
is shown in figure 6b. The dashed line is the prediction of
the BCM. Note that, for �DTR0:75, the incremental
shear compliance for different normal loads becomes
nearly identical. In this regime, the shear response is
governed almost entirely by stretching of the fibril.

Figure 7 shows that a fibril with no applied normal
load can still have normal displacement due to shear.
Figure 7 also shows that the small-deflection theory
considerably underestimates the normal displacement
for large �T0. To study the incremental normal
compliance of the fibril �CNZv �DN=v �N 0 �T0

�� , the
dependence of �DN on �N 0 for different �T0 is shown in
figure 8a. For small �T0, the compliance is small. For a
fixed �N 0, the incremental normal compliance increases

http://rsif.royalsocietypublishing.org/
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Figure 6. (a) The normalized shear displacement versus
shear force for different applied normal loads. The dashed
line is the BCM (2.31) for �N 0Z0 (circles, �N 0Z0; crosses,
�N 0ZK2; solid line, �N 0Z2). (b) The incremental shear
compliance versus normalized shear displacement for
different applied normal loads. The dashed line is the
BCM (2.31) for �N 0Z0 (squares, �N 0Z0; filled circles,
�N 0ZK2; inverted triangles, �N 0Z2). The symbols are the
numerical solution of (2.28)–(2.30).
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Figure 7. The normalized normal displacement, �DN, versus
normalized shear force �T0, for �N 0Z0 (or q0Z0). It shows that
a significant normal deflection at the fibril end can occur with
no applied normal force. Note that the small-deflection theory
underestimates the normal displacement. Circles, large-
deflection theory; crosses, small-deflection BCM.
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significantly with increasing applied shear load �T0; for a
fixed �T0, it also increases slightly with increasing
compressive normal load, as shown in figure 8b.
3. COMPARISON WITH THE EXPERIMENTS

We give an example to illustrate how our model can
be used to interpret the experiments. As mentioned
in §1, the relative deflection of the fibrils (i.e. DT’s)
can be measured in our experiments. Since fibrils far
away from the contact zone Uc do not carry load,
we need only to measure deflections inside a
sufficiently large region U that contains Uc. In our
experiments, the normal force applied on the
indenter, FN, is much smaller than the typical
shear force Fs on the sphere. Therefore, we assume
that the normal force N0 acting on each fibril is
approximately zero. With this assumption, DT and
N0 are known for each fibril (N0Z0), and the shear
force, T0, acting on these fibrils can be computed
using our model. To expedite the computation,
the result of figure 9 is represented as a relation-
ship between �T0 and �DT using a seventh-degree
J. R. Soc. Interface (2008)
polynomial, i.e.

�T0Z261:65 �D
7
TK1296:2 �D

6
TC2373:5 �D

5
T

K1950:9 �D
4
TC765:36 �D

3
TK117 �D

2
TC6 �DT: ð3:1Þ

Figure 9 shows that equation (3.1) is very accurate
and converges to (2.31) for very small �DT.

The total shear force acting on the indenter, Fs, is
given by

Fs Z
Xn
iZ1

T0ðiÞ; ð3:2Þ

where T0(i ) denotes the shear force acting on the ith
fibril and n is the total number of fibrils in U. It
should be noted that, while fibrils inside Uc obey the
clamped–clamped boundary condition, the top of
the fibrils in UKUc can rotate freely. However, there is
no difficulty in computing T0 for these fibrils. Indeed,
the deformation of these fibrils can be obtained by
replacing L0/2 in (2.22) by L0, DT/2 in (2.23) by DT and
(L0CDN)/2 in (2.24) by L0CDN.

We obtainT0(i ) using the following procedure. First,
we select three points on the shear force versus shear
displacement curve in figure 1b. The coordinates of
these points are A(0.0155 mm, 3.80 mN), B(0.0456 mm,
18.68 mN) and C(0.106 mm, 40.03 mN), respectively.
We selectUwith the condition that fibrils outside ofUdo
not have measurable deflections. Once this is done, we
measure the deflection for each fibril (DT( i )) inside U.
�DTði Þ in (3.1) is computed from DT(i ) using LZ67 mm.
We then use (3.1) to obtain �T0ð i Þ. To compute T0(i )
from �T0ð i Þ, we need the Young modulus and the
moment of inertia I. We use a Young modulus of
3 MPa for PDMS, the fibril material. This modulus has
been measured independently using an indentation test
(seeNoderer et al. 2007).Themoment of inertia I is 3.2!
103 (mm)4 since the fibrils in our experiments have a
square cross section of 14 mm. The number of fibrils inU

is 324. We then compute the indenter shear forces using

http://rsif.royalsocietypublishing.org/
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deflection BCM (2.31). The seventh-order polynomial fit
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obtained by solving (2.28)–(2.30). Normal compression is
assumed to be zero.

0.05 0.10 0.150

5

10

15

20

25

30

35

40

45

50

shear displacement (mm)

sh
ea

r 
fo

rc
e 

(m
N

)

*

*

*

Figure 10. Comparison of the experimental data (stage 1,
filled circles) with the large (asterisks) and small (squares)
deflection theoretical results. The small-deflection theory
(BCM) works well for very small shear displacements but
considerably underestimates the shear force for large shear
displacements.
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Figure 8. (a) The dependence of �DN on �N 0 for different �T0.
(b) The normalized normal compliance of a fibril against �N 0

for different �T0. It shows that, for small �T0, the incremental
compliance is small. For a fixed �N 0, the incremental normal
compliance increases significantly with increasing applied
shear load �T0; for a fixed �T0, it also increases slightly with
increasing normal load. The dashed lines are the predictions of
the BCM with �T0Z0. Circles, �T0Z0:5; squares, �T0Z1:5;
asterisks, �T0Z3:5.
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(3.2). They are 5.23 mN for point A, 11.22 mN for point
B and 31.54 mN for point C. We also use the small-
deflection theory (2.31) to compute these shear forces.
They are 3.24 mN for point A, 3.75 mN for point B and
4.02 mN for pointC.These results are shown in figure 10,
which compares the experimental data (stage 1)with the
large- and small-deflection results. As expected, the
small-deflection theory works well for small shear
displacements but strongly underestimates the shear
force for large shear displacements. For example, near
the peak load (e.g. point C), the use of the small-
deflection theory underestimates the shear force by
approximately an order of magnitude. Given the fact
that we have used no adjustable parameters, the
agreement between our large-deflection theory and the
experimental data is quite good.
4. DISCUSSION AND CONCLUSION

The mechanical behaviour of fibrils under combined
normal and shear loads underlies the response of
biomimetic fibrillar arrays. Deformations are typically
large compared with fibril dimensions. We have
developed a nonlinear model to compute the deflection
J. R. Soc. Interface (2008)
of fibrils in microfibril arrays subjected to normal and
shear loads. To simplify the analysis, we have assumed
that the fibrils do not twist. Also, we assume that the
beam can undergo very large deflection but material
behaviour is still linear.

Our model isolates a single fibril in the array to study
its behaviour, whereas, in practice, the entire array is
subjected to normal and shear loads. To illustrate how
our model can be applied in this situation, we use our
model to predict the shear force acting on a glass
indenter in contact with an array of film-terminated
fibrils. The computed shear forces are then compared
with those obtained from the experiments. In the
simulations, we have made the approximation that the
normal force acting on all the fibrils is zero, which is
strictly valid only for fibrils that are outside the contact
zone. For fibrils inside the contact zone, some of the
fibrils canbeunder tension (e.g. those close to the contact
edge), whereas others can be under compression, hence
our assumption is only approximately valid if the normal

http://rsif.royalsocietypublishing.org/


1094 Non-linear compliance of microfibrils J. Liu et al.

 rsif.royalsocietypublishing.orgDownloaded from 
indentation force is very small in comparison with the
shear forces, which is the case in our experiments.
Nevertheless, the prediction of our nonlinear model is in
reasonably good agreement with the experimental data.
We should point out that there is some error in
measuring the relative displacement of each fibril.
Since the nonlinear theory is very sensitive to the relative
shear displacement, it is not surprising that thenonlinear
theory did worst for small deflections, where the relative
error of the measurements can be large. Finally, there is
no fitting parameter in our calculation.

Although our analysis is valid for any loading phase
angle as well as for arbitrary aspect ratios, explicit
results are presented for a particular aspect ratio. Also,
we focus on the case where the normal load is zero. In
general, there is no difficulty in generating results for
other aspect ratios and different phase angles. Also, our
model can be easily modified to describe the defor-
mation of preoriented fibrils.

The model of fibril deformation studied in this work
is quite general and can be used to study fibrillar
structures other than our own. For example, it is
applicable to a similar fibrillar structure (with angled
fibrils) fabricated recently by Yao et al. (2007). It can
also be used to analyse the shear deformation of fibrils
with spatulated tips, such as those fabricated by Kim
et al. (2007).

The analysis will be more complicated for the general
case where the normal indentation force is significant.
In this case, most of the fibrils inside the contact zone
will be under compression except those near the edge.
These edge fibrils will be under tension owing to
adhesion. For this case, the normal and shear loads on
each fibril in the array must be determined using the
contact condition. This will be studied in a future work.

This work was supported by a grant from the Department of
Energy under award number DE-FG02-07ER46463.
APPENDIX A. DERIVATION OF (2.22)––(2.24)

Substituting (2.13) into (2.12) gives

sZ

ðj
0

dj0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

EI
ðN0 cos jmax CT0 sin jmaxÞ

K
2

EI
ðN0 cos j

0 CT0 sin j0Þ

vuuuuuut

: ðA 1Þ

Using (2.25a) and (2.25b), the terms inside the square
root in (A 1) are

2

EI
ðN0 cos jmax CT0 sin jmaxÞ

K
2

EI
ðN0 cos j

0 CT0 sin j0ÞZ 2L

EI
ðsin qmaxKsin qÞ;

ðA 2Þ

where

qhðq0 Cj
0Þ; qmax hðq0 CjmaxÞ: ðA 3Þ
J. R. Soc. Interface (2008)
Since

2L

EI
ðsin qmaxKsin qÞZ 2L

EI
ð1Csin qmaxK1Ksin qÞ;

ðA 4Þ
we can define a constant p by

2p2 h1Csin qmax Z 1Csin q0 Cjmaxð Þ: ðA 5Þ
Note that 0%p%1. Also, introduce a new variable f by

1Csin qh2p2 sin2 f; ðA 6Þ
so that (A 4) isffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2L

EI
ðsin qmaxKsin qÞ

r
Z 2

ffiffiffiffiffiffiffi
L

EI

r
p cos f: ðA 7Þ

It is easy to verify that

dj0 Z dq Z
2p cos f dfffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1Kp2 sin2 f

p : ðA 8Þ

Substituting (A 7) and (A 8) into (A 1), we have

sZ

ffiffiffiffiffiffiffi
EI

L

r ðf
f0

df0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1Kp2 sin2 f0

p ; ðA 9Þ

where

f0 Z sinK1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1Csin q0

2p2

s" #
: ðA 10Þ

Equations (A 5) and (A 6) imply that

jZjmax5q Z qmax5fZ
p

2
: ðA 11Þ

Thus, setting fZp/2 in (A 9) gives

L=2Z

ffiffiffiffiffiffiffi
EI

L

r ð
p=2

f0

df0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1Kp2 sin2 f0

p : ðA 12Þ

Equations (A 3) and (A 9) imply that

dsZ

ffiffiffiffiffiffiffi
EI

2L

r
djffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðsin qmaxKsin qÞ
p

Z

ffiffiffiffiffiffiffi
EI

2L

r
dqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðsin qmaxKsin qÞ
p ; ðA 13Þ

so (2.21a) is

ðL0 CDNÞ
2

Z

ffiffiffiffiffiffiffi
EI

2L

r ðq0Cjmax

q0

cosðqK q0Þdqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsin qmaxKsin qÞ

p ;

ðA 14Þ
which is (2.24). Equation (A 14) can be rewritten as

ðL0 CDNÞ
2

Z

ffiffiffiffiffiffiffi
EI

2L

r
cos q0

ðq0Cjmax

q0

cos q dqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsin qmaxKsin qÞ

p
"

Csin q0

ð
q0Cjmax

q0

sin q dqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsin qmaxKsin qÞ

p
#
:

ðA 15Þ

The first integral in (A 15) can be integrated exactly, i.e.ðq0Cjmax

q0

cos q dqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsin qmaxKsin qÞ

p Z2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinðq0CjmaxÞKsin q0

p
:

ðA16Þ
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The second integral can be expressed in terms of elliptic
functions using (A 5)–(A 7)ðq0Cjmax

q0

sin q dqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðsin qmaxKsin qÞ

p
Z

ffiffiffi
2

p
½K2EðpÞC2Eðf0;pÞCKðpÞKFðf0;pÞ�; ðA17Þ

where

Fðf0;pÞh
ðf0

0

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1Kp2 sin2 f

p df ðA18Þ

is the incomplete elliptic integral of the first kind;
KðpÞZFðp=2;pÞ is the complete elliptic integral of the
first kind;

Eðf0;pÞZ
ð
f0

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1Kp2 sin2 f

p
df ðA19Þ

is the incomplete elliptic integral of the second kind;
and EðpÞZEðp=2;pÞ is the complete elliptic integral of
the second kind. Using (A 16) and (A 17), (A 14)
becomes

ðL0CDNÞ
2

Z

ffiffiffiffiffiffiffi
EI

L

r ffiffiffi
2

p
cos q0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinðq0CjmaxÞKsin q0

ph
Csin q0½K2EðpÞC2Eðp;f0ÞCKðpÞKFðp;f0Þ�

i
:

ðA20Þ
Likewise, (2.23) can be obtained by substituting (A 13)
into (2.21b),

DT=2Z

ðL=2
0

sinjðs0Þds0

Z

ffiffiffiffiffiffiffi
EI

2L

r ðqmax

q0

sinðqKq0Þ
dqffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sin qmaxKsin q
p : ðA21Þ

In exactly the same way, (A 21) becomes

DT=2Z

ffiffiffiffiffiffiffi
EI

L

r
K

ffiffiffi
2

p
sin q0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinðq0CjmaxÞKsin q0

ph
Ccos q0 K2EðpÞC2Eðp;f0ÞCKðpÞKFðp;f0Þ½ �

i
:

ðA22Þ
Using (A 2) and (A 13), (2.20) becomesffiffiffiffiffiffiffi

EI

2L

r ðqmax

q0

dq

ð1CcL sin qÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin qmaxKsin q

p ZL0=2:

ðA23aÞ
Equation (A 23a) can be expressed in terms of
incomplete elliptic integral of the third kind,
Pðn;f;kÞ, i.e.

K
1

ð1CcL sin qmaxÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1Csin qmax

p

P

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin q0Ksin qmax

1Ksin qmax

s
;
ðsin qmaxK1ÞcL
1CcL sin qmax

; i
jcos qmaxj

1Csin qmax

 !

Z
1

2

ffiffiffiffiffiffiffiffiffi
LL2

0

2EI

r
; ðA23bÞ

where

Pðn;f;kÞZ
ðf
0

dq

ð1Kn sin2 qÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1Kk2 sin2 q

p : ðA24Þ
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APPENDIX B. SMALL-ANGLE APPROXIMATION
(SMALL-DEFLECTION APPROXIMATION)

Assuming j is small, (2.10) can be approximated at

dj

ds
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K

2

EI
ðN0CT0jðsÞÞCD

r
; 0!s!L=2: ðB 1Þ

Substituting DZ2=EI ðN0 cos jmaxCT0 sin jmaxÞz
2=EI ðN0CT0jmaxÞ into (B 1) and integrating,we have

sz

ffiffiffiffiffiffiffiffiffi
EI

2T0

s ð
j

0

dj0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jmaxKj0

p

Z

ffiffiffiffiffiffiffiffiffi
2EI

T0

s ffiffiffiffiffiffiffiffiffiffi
jmax

p
K

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jmaxKj

ph i
; jmaxOj; ðB 2Þ

or

jZjmaxK

ffiffiffiffiffiffiffiffiffi
T0

2EI

r
sK

ffiffiffiffiffiffiffiffiffiffi
jmax

p" #2
: ðB 3Þ

Using (2.10) and (2.11) and the fact that (dj/ds)Z0 at
jZjmax, we have

K
2

EI
ðN0CT0jmaxÞCDZ 0

5K
2

EI
T0jmaxC

M0

EI

� �2
Z00jmax Z

1

2T0

M 2
0

EI

� �
:

ðB 4Þ

Since jZjmax when sZL/2, (B 3) implies that

jmax Z
T0L

2

8EI
: ðB 5Þ

Using (B 4), we have

M0 ZK
T0L

2
: ðB 6Þ

Combining (B 3) and (B 5) gives

jZ
T0

2EI
sðLKsÞ: ðB 7Þ

Using (B 5), the small-deflection version of (2.21b) is

DT=2z

ðL=2
0

jðs0Þds0 Z T0L
3

24EI
: ðB 8Þ

The normalized form of (B 8) is (2.31) using LzL0,

�DT Z
1

6
�T0: ðB 9Þ

To determine the relationship between normal displace-
ment and normal load for small deflections, we
approximate (2.20) by assuming that the slope is
small, so that jzy0, dszdx, i.e.ðL=2

0

dx

1Cc½N0CT0y
0� ZL0=2: ðB 10Þ

Consistent with small deflections, we assume

cT0y
0=ð1CcN0Þ/1: ðB 11Þ
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The integral in (B 10) can be written asðL=2
0

dx

ð1CcN0Þ 1C cT0y
0

ð1CcN0Þ

h iz 1

ð1CcN0Þ

ðL=2
0

1K
cT0y

0

ð1CcN0Þ

� �
dx Z

1

ð1CcN0Þ
L

2
K

cT0DT

2ð1CcN0Þ

� �
;

ðB 12Þ
where we have usedðL=2

0
y 0 dx Z yðL=2ÞZDT=2: ðB 13Þ

Using (B 12) and (B 13), (B 10) becomes

DnK
cT0DT

ð1CcN0Þ
ZL0cN0; ðB 14Þ

where LzL0CDN. Equation (2.32) is obtained by
substituting (B 9) into (B 14), i.e.

Dn ZL0cN0C
12cEID2

T

L3ð1CcN0Þ
: ðB 15Þ
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